Comparison of Multivariate Means across Groups with Ordinal Dependent Variables: A Monte Carlo Simulation Study

نویسنده

  • W. Holmes Finch
چکیده

Multivariate analysis of variance (MANOVA) is a widely used technique for simultaneously comparing means for multiple dependent variables across two or more groups. MANOVA rests on several assumptions, including that of multivariate normality. Much prior research has investigated the performance of standard MANOVA with continuous, nonnormally distributed variables. However, very little work has examined its performance when the dependent variables are ordinal in nature. Therefore, the current study was designed to investigate the performance of standard MANOVA with ordinal dependent variables, and to compare it with several alternatives that might prove superior in this context. Results of the simulation study demonstrated that methods based on ranks, and spatial ranks and signs were optimal in terms of controlling the Type I error rate and maintaining reasonably high power. All of the methods considered here were applied to an existing dataset, and implications of the study results for practice are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beta - Binomial and Ordinal Joint Model with Random Effects for Analyzing Mixed Longitudinal Responses

The analysis of discrete mixed responses is an important statistical issue in various sciences. Ordinal and overdispersed binomial variables are discrete. Overdispersed binomial data are a sum of correlated Bernoulli experiments with equal success probabilities. In this paper, a joint model with random effects is proposed for analyzing mixed overdispersed binomial and ordinal longitudinal respo...

متن کامل

Fitting and Comparison of Models for Multivariate Ordinal Outcomes

In this paper, we consider the analysis of models for univariate and multivariate ordinal outcomes in the context of the latent variable inferential framework of Albert and Chib (1993). We review several alternative modeling and identification schemes and evaluate how each aids or hampers estimation by Markov chain Monte Carlo simulation methods. For each identification scheme we also discuss t...

متن کامل

Kinetic Monte Carlo Study of Biodiesel Production through Transesterification of Brassica Carinata Oil

In the present study, the kinetics of biodiesel production through transesterification of Brassica carinata oil with methanol in the presence of Potassium Hydroxide is investigated by kinetic Monte Carlo simulation. The obtained results from simulation agree qualitatively with the existing experimental data. The kinetics data for each step of suggested mechanism are confirmed by simulation. By ...

متن کامل

Bayesian Inference for Ordinal Data Using Multivariate Probit Models

Multivariate ordinal data arise in many areas of applications. This paper proposes new efficient methodology for Bayesian inference for multivariate probit models using Markov chain Monte Carlo techniques. The key idea for our approach is the novel use of parameter expansion to sample correlation matrices. We also propose methodology for model selection. Our approach is demonstrated through sev...

متن کامل

A Fully Nonparametric Modelling Approach to Binary Regression

We propose a general nonparametric Bayesian framework for binary regression, which is built from modelling for the joint response-covariate distribution. The observed binary responses are assumed to arise from underlying continuous random variables through discretization, and we model the joint distribution of these latent responses and the covariates using a Dirichlet process mixture of multiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016